Subspace Clustering with Missing and Corrupted Data

Zachary Charles (UW-Madison)

Joint with Amin Jalali and Rebecca Willett (UW-Madison)
Real data is messy (or missing)

How do we remove noise and fill in missing values?
Matrix completion

- We assume the data is inherently **low rank**.
- Allows us to impute missing data with convex optimization. [Candès, Tao, 2009].
- Extensions allow for missing data and noise. [Voltchinskii, 2011] [Klopp, 2012]

http://perception.csl.illinois.edu/matrix-rank/home.html
Issue: Most data is not low rank.
Union of subspaces

- What if the data comes from a union of low-dimensional subspaces?
Union of subspaces model

- Data matrix \(X = Y + Z \).
- \(Z \) = corruption matrix.
- \(Y \) comes from a union of \(d \)-dimensional subspaces:
 \[S_1 \cup S_2 \cup \cdots \cup S_L \]
- Cluster \(X \) by the subspaces, reduce to low-rank matrix completion.

New problem: Subspace clustering
Subspace clustering

- Key idea: self-expressivity [Elhamifar, Vidal, 2009].
- Each column is a sparse linear combination of other columns from the same subspace.

- Optimization formulation:

\[
\min_c \|c\|_0 \quad \text{s.t.} \quad x_i = Xc, \quad c_i = 0
\]
Sparse subspace clustering (SSC):

- **SSC** [Elhamifar, Vidal, 2009]:
 \[
 \min_{c} \|c\|_1 \quad \text{s.t.} \quad x_i = Xc, \quad c_i = 0
 \]

- **LS-SSC** [Soltanolkotabi et al., 2014] [Wang, Xu, 2016]:
 \[
 \min_{c} \|c\|_1 + \frac{\lambda}{2} \|Xc - x_i\|_2^2
 \]

- Prior work focused on the amount of noise this can tolerate.
- Success criteria: no false positives.
Main results

- $L d$—dimensional randomly selected subspaces from \mathbb{R}^n.
- $\Omega(d)$ samples are drawn randomly on the unit sphere from each subspace.
- $d = O(n/\# \text{ of samples})$.

Additive noise of norm δ OR M missing entries per sample

<table>
<thead>
<tr>
<th></th>
<th>δ</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang, Xu</td>
<td>$O(1/d)$</td>
<td>$O(n/d^2)$*</td>
</tr>
<tr>
<td>C., Jalali, Willett</td>
<td>$O(1/\sqrt{d})$</td>
<td>$O(n/d)$</td>
</tr>
</tbody>
</table>
Contributions

- We guarantee success for additive noise bounded by:
 - The alignment of the subspaces (*subspace incoherence*).
 - The distribution of points in a subspace (*inradius*).
- Novel subspace incoherence definition leads to better bounds.
- Extend additive noise case to missing data.
 - Randomly zeroing out entries ≜ projecting on to random axis-aligned subspaces.
 - Apply Johnson-Lindenstrauss style results.
Subspace incoherence

\[\text{Primal:} \quad \min_c \|c\|_1 + \frac{\lambda}{2} \|Ac - x\|_2^2 \]

\[\text{Dual:} \quad \max_\nu \langle x, \nu \rangle - \frac{1}{2\lambda} \|\nu\|_2^2 \quad \text{s.t.} \quad \|A^T\nu\|_\infty \leq 1 \]

\[\nu / \|\nu\|_2 = \text{Dual direction} \]

Our subspace incoherence: Maximum inner product of the dual vectors and the uncorrupted samples.

Prior subspace incoherence: Maximum inner product of the projected dual vectors and the uncorrupted samples.

By avoiding projection, we can better measure the affinity between the corrupted and the true subspaces.
Contributions

- LS-SSC can be used location agnostically.

\[\min_c \|c\|_1 + \frac{\lambda}{2} \|Xc - x_i\|_2^2 \]

- Assume missing entries are set to zero.
- Zeros may be a observed zeros or missing.
- Allows use in presence-only data settings:
 - Population sampling.
 - Disease screening.
Conclusion

- Low rank assumptions may not hold true in general.
- Union of subspaces model can explain full rank data.
- Convex analysis, high-dimensional statistics can guarantee subspace clustering methods succeed.

Open problems:

- How do we guarantee clustering accuracy?
- Information-theoretic limits?
- What about unions of low-dimensional non-linear spaces?
Fin.